Результаты своей работы команда ученых из Колумбийского университета (Нью-Йорк, США) опубликовала в рецензируемом журнале Nature Chemical Biology. Для записи и считывания данных биологи создали систему, чувствительную к окислительно-восстановительным реакциям в клетках. Она настроена так, чтобы улавливать взаимодействия конкретных плазмид с хромосомной дезоксирибонуклеиновой кислотой бактерий.
Плазмиды — компактные молекулы ДНК, которые в нормальных условиях могут нести дополнительный генетический материал бактерий, обособленный от основного генома. Зачастую именно эти структуры помогают микроорганизмам приобретать устойчивость к новым факторам среды. Благодаря свойству плазмид сравнительно легко передаваться от клетки к клетке, ученые часто используют их как инструмент для генетических модификаций.
Схема запоминающего устройства из колоний бактерий / ©Yim, S.S., McBee, R.M., Song, A.M. et al. Robust direct digital-to-biological data storage in living cells. Nat Chem Biol (2021). https://doi.org/10.1038/s41589-020-00711-4
Чтобы превратить бактерии в «биологическую флешку», в них ввели два типа специально созданных плазмид — сенсорный и записывающий. Они реагируют на определенные биологические сигналы и начинают модифицировать геном бактерии. Запись необходимых данных производится аналогично штрих-коду в заранее выбранных CRISPR-локусах. Способность бактерий защищать свой геном от негативных факторов среды позволила прочесть сохраненные учеными данные даже спустя 80 поколений подопытных микроорганизмов.
Емкость экспериментального банка памяти пока не впечатляет — всего 72 бита в 24 трехбитовых ячейках. Этого было достаточно для записи «Hello World» специально разработанным кодом, но, чтобы применить технологию на практике, требуются серьезные усовершенствования. К тому же нужно снизить количество ошибок: даже на столь малом объеме информации точность считывания составила всего 98 процентов.
Принципиальная схема эксперимента / ©Yim, S.S., McBee, R.M., Song, A.M. et al. Robust direct digital-to-biological data storage in living cells. Nat Chem Biol (2021). https://doi.org/10.1038/s41589-020-00711-4
С другой стороны, американские биологи и не собирались сразу создавать бактериальный компьютер. Поставленный ими эксперимент — подтверждение концепции, демонстратор технологии. Авторы работы отмечают, что уже видят пути радикального повышения эффективности. Возможно, следующая версия установки будет оперировать уже килобайтами. Основное достижение команды из Колумбийского университета заключается в создании способа прямой записи информации в ДНК живых клеток.
[shesht-info-block number=1]
Как правило, методы записи данных в дезоксирибонуклеиновую кислоту подразумевают полный синтез молекулы с нужной информацией на ней. Живые клетки в таком случае выступают лишь как хранилище данных, бесконечно реплицируя генетический материал с побочной информацией.